
1 DOCUMENT RESUSE

ED 342 809 TM 017 987

AUTHOR Taylor, Dianne L.
TITLE Cross-Validation in Canonical Analysis.
PUB DATE Jan 92
NOTE 24p.; Paper presented at the Annual Meeting of the

Southwest Educational Research Association (Houston,
TX, January 31-February 2, 1992).

PUB TYPE Reports - Evaluative/Feasibility (142) --
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS College Faculty; Correlation; *Generalizability

Theory; Heuristics; Higher Education; Instructional
Leadership; *Multivariate Analysis; *Research
Methodology; Statistical Studies; *Validity

IDENTIFIERS *Cross Validation; *Invariance; Research Replication;
Univariate Analysis

ABSTRACT
The need for using invariance procedures to establish

the external validity or generalizability of statistical results has
been well documented. Invariance analysis is a tool that can be used
to establish confidence in the replicability of research findings.
Several approaches to invariance analysis are available that are
broadly applicable across univariate and multivariate procedures.
This paper explains one of these procedures, cross-validation. One
form of the technique, double cross-validation, is applied in a
canonical correlation analysis using a heuristic data set. A double
cross-validation of the weights in a canonical correlation analysis
is used to test for invariance in a study of university leadership
conducted by M. L. Tucker (1990) with 105 subjects. A brief overview
of both invariance testing and canonical correlation analysis is
provided. Four tables present data from the analysis, and a 27-item
list of references is included. An appendix contains the computer
command lines used to generate the cross-validation. (Author/SLD)

**********************************************************************
Reproductions supplied by EDRS are the best that -zan be made

from the original document.
***************************************************** *****************



gtt4

ctoz

UAL 0111PARTMENT OF IOUCATION
Mc* of Educabonal RISMITCh and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Nis document has been ll1PrOduCed 11$
moved Item the person or organitation
originating it

0 Minor changes nevi Peen made to improve
reproduction quality

Points ot view or opinions Stated in this docu-
ment do not necessarily represent official
OERI position or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

1A,tiovr 4. .Thit-Oif

TO THE EDUCATIDNAL RESOURCES
INFORMATION CENTER (ERIC)."

Cross-Validation in Canonical Analysis

Dianne L. Taylor
Tulane University

Running Head: Cross-validation

Paper presented at the annual meeting of the Southwest
Educational Research Association, Houston, TX, January, 1992.

2 BEST COPY AVAILABLE



v

ABSTRACT

The need for employing invariance procedures to establish the

external validity or generalizabill.: )1 statistical results has

been well documented. Invariance an; is is a tool that can be

used to establish confidence in the aplicability of research

findings. Several approaches to invariance analysis are available

which are broadly applicable across univariate and multivariate

procedures. The purpose of the present paper is to explain one of

these procedures, cross-validation. A form of the technique,

double cross-validation, is applied in a canonical correlation

analysis using a heuristic data set. A brief overview of both

invariance testing and canonical correlation analysis is provided.
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The need for employing invariance procedures to the establish

the external validity or generalizability of statistical results

has been well documented (e.g., Carver, 1978; Cooil, Winer, &

Rados, 1987; Crask & Perraault, 1977; Daniel, 1989; Fish, 1986;

Taylor, 1991; Thompson, 1989; Thorndike, 1978). Nevertheless,

while the results of internal validity studies are commonly

included in published research, one rarely sees the results of

external validity analyses reported. It is possible that this

circumstance arises from a mistaken belief that statistical

significance tests inform the researcher regarding the likelihood

that results will replicate (Thompson, 1992).

Statistical significance does not confirm the generalizability

of study results, nor is statistical significance more important

than result generalizability. The most important research findings

are those which are both statistically significant and replicable

(Tukey, 1969). Some hard sciences seem to have come to grips with

this axiom. Social sciences, such as education, pay "little

attention to this principle" (Huck, Cormier, & Bounds, 1974, p.

369).

Invariance analysis is a tool that can be used to establish

confidence in the replicability of research findings. Several

approaches to invariance analysis are available whizh are broadly

applicable across univariate and multivariate procedures. Included

among these approaches are the jackknife (Crask & Perreault, 1977;

Daniel, 1989; Taylor, 1991), bootstrap (Campbell & Taylor, 1992;

Diaconis & Efron, 1983), Procrustean rotation (Tucker 6 Taylor,

4



Cross-validation 2

1991), the U-method (Crask fi Perreault, 1977; Daniel, 1989;

Prosser, 1991), and cross-validation methods (Cooil et al., 1987;

Fish, 1986; Loftin, 1991).

The purpose of the present paper is to explain one of these

procedures, cross-validation. A form of the technique, double

cross-validation, will be applied in a canonical correlation

analysis uslng a heuristic data set. Before turning to the

invariance procedure, however, a brief overview of both invariance

testing and canonical correlation analysis is provided.

A Note on Invariance Testing

Research results which are found to be invariant are

relatively stable across samples; that is, they are not sample

specific, and therefore, are likely to replicate in future studies.

Because replicability is the "cornerstone of science" (Carver,

1978, p. 392), invariance is part of the overall result a

researcher hopes to report from a study. However, sampling error

may be substantial enough to lead to sample specific results.

Some sampling error will be present in any study, despite care

taken during the design phase to ensure that the population is

randomly sampled. Further, the statistical procedures used are

likely to exaggerate unusual features in data due to error.

According to Thompson (1991b), "all classical Analytic methods are

correlational" (p. 87), and correlational procedures tend to

capitalize on chance characteristics of the sample, thereby

decreasing the generalizability of the findings (Thompson, 1981).

The effect of this capitalization cannot be statistically
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minimized, but it can be detected using invariance procedures.

Thus, invariance testing, not significance testing, is the

researcher's protection against reporting misleading or inaccurate

results which can wrongly influence a field of study.

The logic of invariance analysis is uncomplicated. A number

of frequently used procedures draw subsamples from data in hand

and recalculate for each subsample the statistic of interest.

Results for both the total sample and the subsamples are compared

empirically. If the results are similar, a basis is provided for

vesting confidence in a conclusion that the study findings are

generalizable. On the other hand, if the results vary

substantially across resamplings, it is likely that the study

findings are an artifact of the sample and will not be replicated

in future research. Thompson (1991a) emphasizes the need for

making these comparisons empirically, rather than relying on the

way the data "look." Data that appear to be different may, through

empirical comparisons, turn out to be quite similar. The reverse

is also true. Subjective judgment is insufficient as a guide to

making conclusions about generalizability.

One of the most commonly used invariance procedures is cross-

validation. According to Cooil et al. (1987), cross-validation

methods involve dividing a single sample "into two subsamples...,

estimating the coefficients on one and validating on the other" (p.

272). Double cross-validation follows the same procedure, except.

that the coefficients from both subsamples are validated on the

other. Guidelines have not been established regarding how a sample
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should be subdivided (Cooil et al., 1987). Some researchers opt

for a 50-50 split, others prefer a 60-40, or even a 70-30 split.

Cooil et al. caution that data-splitting for cross-validation

purposes poses the problem of violating the sufficiency principle.

This occurs

because the estimates are not based on the entire sample.

...Underutilization of the information in the kiample

produces inefficient coefficient estimates and

correspondingly inefficient predictions. This outcome

occurs with any size sample, but small samples aggravate

the problem. (Cooil et al., 1987, p. 272)

Violation of the sufficiency principal and data splitting with

small samples pose serious limitations to this invariance

technique. If sample size is small, it is advisable to choose some

other invariance procedure, such as the jackknife, which is not so

much affected by sample size. However, if sample size is adequate,

Cooil et al. suggest that an uneven split of the sample compensates

for the problem with the sufficiency principle.

Thompson (1984) notes that invariance testing is particularly

important in canonical correlation analysis because like all

parametric methods the procedure "tends...to capitalize on sampling

error" (p. 41). Thorndike (1978) explains further that use of an

invariance procedure "is...important for canonical

analysis...because there are two sets of weights, each of which

will make maximum use of sample specific covariation" (p. 180).

7
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An overview of canonical correlation analysis will make Thorndike's

caution clearer.

A Brief Overview of Canonical Correlation Analysis

Canonical correlation analysis has been called the most

general linear model because it subsumes all univariate and

multivariate parametric procedures as special cases (Thompson,

1991b). An advantage of using canonical correlation analysis is

that this procedure does not discard variance by forcing subjects

into groups, as happens with OVA procedures (e.g., ANOVA or

MANOVA). Rather, all of the variability in the data is used in

the canonical calculations (Thompson, 1984).

Canonical correlation analysis is a complex procedure that

might be more easily understood if it is compared to a familiar

procedure, such as regression. In multiple regression, the task

is to explore the relationship between one dependent, or criterion,

variable and multiple independent, or predictor, variables. For

example, we might wish to explore the relationship between the

criterion variable, student achievement, and such predictor

variables as ability, family income, and class size.

In canonical correlation, one is able to explore the

relationship between multiple criterion variables and multiple

predictor variables. Expanding the above example, it might be of

interest to use several criterion variables. In addition to

student achievement, student behavior and attendance could also be

examined using the same set of predictor variables (ability,

income, and pupil-teacher ratio). Thus, in canonical correlation,
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there are multiple criterion variables as well as multiple

predictor variables involved in the analysis. The use of canonical

correlation when several criterion variables are being studied can

lead to remarkably different results than would occur with multiple

univariate analyses, each using a different criterion variable,

even if the same data were used in the analyses (Fish, 1988).

Thompson (1984, 1991b) explains that canonical analysis relies

on factor analytic procedures in which weights are used to create

synthetic combinations of the original variables. These synthetic

combinations, or functions, are comprised of composite predictor

scores and composite criterion scores for each subject. According

to Thompson (1991b), "the bivariate correlation between the

[predictor and criterion] scores...is the canonical correlation

coefficient (Rc)" (p. 83).

There will be as many functions produced by a canonical

correlation as there are variables in the smaller variable set

(predictor or criterion). Determining which of the functions to

interpret depends on the strength of the squared canonical

correlation (Rc2) and the test of statistical significance for each

function. Statistically significant functions with a large Rc2

should be interpreted (Thompson, 1991b).

The weights described above are not unique to canonical

analysis. They are used in most statistical procedures, but are

given different names. For example, in regression, they are called

beta weights; in factor analysis, they are referred to as pattern

coefficients; in canonical correlation, they are standardized

9



Cross-validation 7

canonical function coefficients. The weights are applied to values

for the predictor and criterion variables in such a way that

redundancy among the synthetic composites is eliminated. Further,

the sets of weights are derived in such a way that they "maximize

[the] correlation coefficient" between the predictor and criterion

variables (Pedhazur, 1982, p. 722).

As with other types of multivariate analysis, there has been

some controversy concerning whether the weights or the structure

coefficients should be interpreted. This split in opinion has been

based in part on the belief that the structure coefficients may be

more stable than the weights. But Monte Cazlo work by Thompson

(1991a) indicated that function [weights] and structure

coefficients are influenced by sampling error t) roughly equal

degrees. Thus, the standardized canonical function coefficients

are critical not only for developing the synthetic variates on

which the analysis is founded, but they are also necessary for

substantive interpretations, and are of cmtral importance in

cross-validation, as will be demonstrated.

Cross-validation of the Weights

The current paper presents a double cross-validation of the

weights in a canonical correlation analysis to test for invariance

in a study of university leadership conducted by Tucker (1990).

The sample consisted of the university chancellor, the top

administrative staff, deans, department chairs, and certain

faculty. One purpose of the study was to determine whether style

of leadership could predict (a) satisfaction with leaders, (b)

10
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perceptions of leader effectiveness, and (c) willingness of

followers to expend extra effort.

The Multifactor Leadership Questionnaire ( (MLQ] Bass &Avolio,

1990) was distributed to a sample of 200 subjects; 105 usable

surveys were returned. Certain subscales of the MLQ assess the

extent to which leaders exhibit one of three leadership styles.

One style, transactional leadership, is characterized by an

exchange relationship in which leaders dispense rewards to motivate

followers. A second style, transformational leadership, augments

transactional skills by using charisma and other attributes to

motivate followers to excel beyond expectations. Finally, laissez-

faire leadership, the third style, can best be described as an

absence of leadership. These three types of leadership comprised

the set of predictor variables in this study. The criterion

variables (satisfaction with leaders, followers' perception of

leader effectiveness, and extra effort exerted by followers) were

also measured through the subscales of the MLQ.

Each variable set contains three variables, therefore, the

canonical analysis yielded three canonical functions (i.e., three

sets of weights). These functions, the standardized canonical

function coefficients, and the Rc2 are presented in Table 1.

Although both function one and two are significant, only function

one has a substantial Rc2, therefore, only function one will be

used in the invariance analysis.

11
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INSERT TABLE 1 ABOUT HERE.

To compute the double cross-validation, the following steps,

outlined by Fish (1986), were followed in sequence:

1) a canonical correlation was computed for the total sample;

2) the sample was randomly split into two groups at a ratio of

roughly 70-30;

3) values for each of the variables in both the predictor and

criterion set were converted into z-scores for both groups;

4) a canonical correlation analysis was computed for both groups

to obtain the standardized canonical function coefficients;

5) four composite criterion variables and four composite

predictor variables were computed for each case by multiplying

the z-scores with the function coefficient for each variable

as follows:

a) composite variable CRIT11 was derived ty multiplying the

z-scores and weights for each criterion variable for

group 1;

b) composite variable PRED11 was derived by multiplying the

z-scores and weights for each predictor variable for

group 1;

c) composite variable CRIT12 was derived by multiplying for

each criterion variable the z-scores for group 1 with the

weights for group 2, cross-validating the criterion

variables;

12
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d) composite variable PRED12 was derived by multiplying for

each predictor variable the z-scores for group 1 with the

weights for group 2, cross-validating the predictor

variables;

e) in order to calculate a double cross-validation,

composite variables CRIT22, PRED22, CRIT21, and PRED21

were created following the procedure just described, but

adjusting to use the z-scores for group 2 and the weights

for group 1;

6) four correlation coefficients were computed as follows:

a) the predictor and criterion composite variables for group

1 were correlated (Rc11);

b) the cross-validated predictor and criterion composite

variables for group 1 were correlated (Rc12);

c) the predictor and criterion composite variables for group

2 were correlated (Rc22);

d) the cross-validated predictor and criterion composite

variables for group 2 were correlated (Rc21);

7) each correlation coefficient was squared;

8) differences between Rcll and Rc12, and Rc22 and Rc21 were

computed.

Small differences between the squared correlation coefficients are

indicative of invariant results.

The standardized canonical function coefficients used in

making the calculations can be found in Table 2; z-scores for the

total sample were too numerous to reproduce here. Correlations

13
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among the predictor and criterion composites computed during the

invariance process are presented in Table 3. SPSSx command lines

used to generate the cross-validation are contained in Appendix A.

INSERT TABLES 2 AND 3 ABOUT HERE.

Results of the double cross-validation are presented in Table

4. Each correlation coefficient in Table 3 was squared and the

result of the cross-validated values were subtracted from those

values not cross-validated. The resulting invariance coefficient

in each case was a small .02, indicating that the results of this

study are very likely to replicate in future studies.

INSERT TABLE 4 ABOUT HERE.

Summary

By using invariance procedures, researchers can gain a measure

of confidence that study results are not unique to the sample

employed. Although invariance results are seldom found in

published research, some (Carver, 19778; Lykken, 1968; Thompson,

1989) argue that establishing generalizability is perhaps more

important than evaluating statistical significance and should be

a part of every research study. With regard to canonical

correlation, however, Thompson (1989) counsels that use of cross-

validation procedures for canonical weights is a method of

establishing replicability, not stability; "function coefficients

can appear to be quite different yet may yield equivalent synthetic

composite variables" (p. 13).

14
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Two issues should be kept in mind when planning an invariance

analysis. One is the sensitivity of the chosen technique to small

sample size. The reliability of cross-validation results is

compromised by small sample size, therefore, the procedure should

be avoided in such instances. The other issue has to do with

interpreting invariance coefficients. Invariance testing is a

relatively new field and parameters for interpreting the results

are just beginning to be established. Until more work is done in

this area, Thompson (1984) suggests using more than one invariance

procedure, as a matter of caution and care.

15



Cross-validation 13

References

Bass, B. M. & Avolio, B. J. (1990). Transformational leadership

development: Manual for the Multifactor Leadership

Questionnaire. Palo Alto, CA: Consulting Psychologists Press.

Campbell, K. T. & Taylor, D. L. (1992, January). Application of a

bootstrap technique with factor analysis. Paper presented at

the annual meeting of the Southwest Educational Research

Association, Houston.

Carver, R. P. (1978). The case against statistical significance

testing. Harvard Educational Review, 48, 378-399.

Cooil B., Winer, R. S., & Rados, D. L. (1987). Cross-validation

for prediction. Journal of Marketing Research, 24, 271-279.

Crask, M. R. & Perreault, W. D., Jr. (1977). Validation of

discriminant analysis in marketing research. Journal of

Marketing Research, 14, 60-68.

Daniel, L. G. (1989, January). Use of the jackknife statistic to

establish the external validity of discriminant analysis

results. Paper presented at the annual meeting of the

Southwest Educational Research Association, Houston. (ERIC

Document Reproduction. Service No. ED 305 382)

Diaconis, P. & Efron, B. (1983). Computer-intensive methods in

statistics. Scientific American, 248(5), 116-130.

Fish, L. (1986, November). The importance of invariance procedures

as against tests of statistical significance. Paper presented.

at the annual meeting of the Mid-South Educational Research

Association, Memphis.

16



Cross-validation 14

Fish, L. (1988). Why multivariate methods are usually vital.

Measurement and Evaluation in Counseling and Deve/opment, 11,

130-137.

Huck, S. W., Cormier, W. P. & Bounds, W. G., Jr. (1974). Reading

statistics and research. New York: Harper 6 Row.

Loftin, L. B. (1991, January). The im ortance of invariance

procedures: Application of cross-validation in discriminant

analysis. Paper presented at the annual meting of the

Southwest Educational Research Association, San Antonio.

Lykken, D. T. (1968). Statistical significance in psychological

research. Psychological Bulletin, 70, 151-159.

Pedhazur, El J. (1982). Multiple regression in behavioral research.

2nd ed. New York: Holt, Rinehart and Winston.

Prosser, B. (1991, January). Use of the U-Method to establish the

external validity of discriminant analysis results. Paper

presented at the annual meeting of the Southwest Educational

Research Association, San Antonio.

Taylor, D. (1991, January). Evaluating the sample specificity of

discriminant analysis results using the jackknife statistic.

Paper presented at the annual meeting of the Southwest

Educational Research Association, San Antonio.

Thompson, B. (1981). Utility of invariance coefficients. Perceptual

and Motor Skills, 52, 708-710.

Thompson, B. (1984). Canonical correlation analysis: Uses and

interpretation. Newbury Park, CA: Sage.

17



Cross-validation 15

Thompson/ B. (1988/ April). Canonical correlation analysis: An

explanation with comments on correct practice. Paper presented

at the annual meeting of the American Educational Research

Association/ New Orleans. (ERIC Document Reproduction Service

No. ED 295 957)

Thompson/ B. (1989). Statistical significance/ result importance/

and result generalizability: Three noteworthy but somewhat

different issues. Measurement and Evaluation in Counseling

and Development/ 221 2-6.

Thompson/ B. (19891 March). Invariance of multivariate results: A

Monte Carol study of canonical coefficients. Paper presented

at the annual meeting of the American Educational Research

Association/ San Francisco.

Thompson/ B. (1991a). Invariance of multivariate results. Journal

of Experimental Education/ 59/ 367-382.

Thompson/ B. (1991b). A primer on the logic and use of canonical

correlation analysis. Measurement and Evaluation in Counseling

and Development/ 24/ 80-95.

Thompson/ B. (1992/ April). Bootstrap and other approacha. to

evaluating statistical significance. Paper presented at the

annual meeting of the American Educational Research

Association/ San Francisco.

Thorndike, R. M. (1978). Correlational procedures fol: research.

New York: Gardner Press.

Tucker/ M. L. (1990). Higher education leadership: Transformational

leadershi as a predictor of satisfaction effectiveness and

18



Cross-validation 16

extra effort. Unpublished doctoral dissertation, University

of New Orleans, New Orleans.

Tucker, M. L. & Taylor, D. L. (1991, January). Applying Procrustean

rotation to evaluate the geraralizability of research results.

Paper presented at the annual meeting of the Southwest

Educational Research Association, San Antonio.

Tukey, J. W. (1969). Analyzing data: Sanctification or detective

work? American PsyLhnlogist, 24, 83-91.

19



Cross-validation 17

Table 1

Standardized Canonical Function Coefficients

Ful.ction I" Function II* Function III

Transformational -.98 .91 .61

Transactional -.01 1.33 .19

Laissez-faire .03 .29 1.15

Extra Effort -.49 .75 1.26

Effectiveness -.50 .47 -1.52

Satisfaction -.10 -1.45 .33

Rc
2

.87 .11 .01

*2.001
**2.< .01
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Table 2

Standerdized Canonical Function Coefficients
for Function 1 for both Groups

Function I
Gr. 1 Gr. 2

Transformational 1.005 -.975

Transactional -.035 -.055

Laissez-faire -.036 -.039

Extra Effort .523 -.365

Effectiveness .506 -.558

Satisfaction .063 -.155

0 1kr
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Table 3

Correlations between the Predictor
and Criterion Composites

PRED11 x CRIT11 = .94
PRED12 x CRIT12 = .93

PRED22 x CRIT22 = .94
PRED21 x CRIT21 = .93

Table 4

Invariance Coefficients

Squared
Correlation
RC112 (minus)

.88

Squared
Invariance
Correllation
Rc12' (equals)

.86

Invariance
Coefficient

Inv. Coef.

.02

Rc222 (minus) RC212 (equals) Inv. Coef.

.88 .86 .02
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Appendix

TITLE "CANONICAL CORRELATION ANALYSIS FOR SERA 1992"
SET WIDTH=80
FILE HANDLE DT/NAME='D4.DAT'
DATA LIST FILE=D4.DAT /ITEM1 TO ITEM80 1-80 LEADER 81-88(4)
RELATE 89-90

******************************************************************
A series of COMPUTE statements here created the variables
EEFFT, EFFEC, SAT, TFSCOR, TASCOR, and LF that are used in the
canonical correlation.
******************************************************************

SUBTITLE 'CANONICAL CORRELATIONS ANALYSIS OF ENTIRE DATA SET'
MANOVA EEFFT EFFEC SAT WITH TFSCOR TASCOR LF

/PRINT=SIGNIF(EIGEN DIMENR) CELLFINO (MEANS)
DISCRIM(STANICORIALPHA(1.00))
/DESIGN

*******************************************************************
A canonical correlation analysis has been run on the total data
set. The data set will now be split into two groups to perform a
cross-validation using the variable RELATE.
******************************************************************

DO IF (RELATE2 EQ 1 OR RELATE2 EQ 2 OR RELATE2 EQ 3 OR RELATE2 EQ
4 OR RELATE2 EQ 5 OR RELATE2 EQ 6)
COMPUTE A=1
ELSE
COMPUTE A=2
END IF

SORT CASES BY A
SPLIT FILE BY A
DESCRIPTIVES VARIABLES=EEFFT EFFEC SAT TFSCOR TASCOR LF
/SAVE

LIST VARIABLES=ZEEFFT ZEFFEC ZSAT ZTFSCOR ZTASCOR ZLF
/FORMAT=NUMBERED/CASES=500

MANOVA EEFFT EFFEC SAT WITH TFSCOR TASCOR LF
/PRINT=SIGNIF(EIGEN DIMENR) CELLFINO (MEANS)
DISCRIM(STANICORIALPHA(1.00))
/DESIGN

SPLIT FILE OFF

DO IF A=1
COMPUTE CRIT11=(ZEEFFT*.523) + (ZEFFEC*.506) + (ZSAT*.063)
COMPUTE PRED11=(ZTFSCOR*1.005) + (ZTASCOR*-.035) + (ZLF*-.036)
END IF
LIST VARIABLES=CRIT11 PRED11
CORRELATION VARIABLES=CRIT11 WITH PRED11

3
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DO IF A=1
COMPUTE CRIT12=(ZEEFFT*-.365) + (ZEFFEC*-.558) + (ZSAT*-.155)
COMPUTE PRED12=(ZTFSCOR*-.975) + (ZTASCOR*-.055) + (ZLF*-.039)
END IF
LIST VARIABLES=CRIT12 PRED12
CORRELATION VARIABLES=CRIT12 WITH PRED12

DO IF A=2
COMPUTE CRIT22-(ZEEFFT*-.365) + (ZEFFEC*-.558) + (ZSAT*-.155)
COMPUTE PRED22=(ZTFSCOR*-.975) + (ZTASCOR*-.055) + (ZLF*-.039)
END IF
LIST VARIABLES=CRIT22 PRED22
CORRELATION VARIABLES=CRIT22 WITH PRED22

DO IF A=2
COMPUTE CRIT21=(ZEEFFT*.523) + (ZEFFEC*.506) + (ZSAT*.063)
COMPUTE PRED21=(ZTFSCOR*1.005) + (ZTASCOR*-.035) + (ZLF*-.036)
END IF
LIST VARIABLES=CRIT21 PRED21
CORRELATION VARIABLES=CRIT21 WITH PRED21


